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Abstract—Code decay is a gradual process that negatively
impacts the quality of a software system. Developers need trusted
measurement techniques to evaluate whether their systems have
decayed. The research aims to find what is currently known about
code decay detection techniques and metrics used to evaluate
decay. We performed a systematic mapping study to determine
which techniques and metrics have been empirically evaluated.
A review protocol was developed and followed to identify 30
primary studies with empirical evidence of code decay. We
categorized detection techniques into two broad groups: human-
based and metric-based approaches. We describe the attributes of
each approach and distinguish features of several subcategories of
both high-level groups. A tabular overview of code decay metrics
is also presented. We exclude studies that do not use time (i.e.,
do not use evaluation of multiple software versions) as a factor
when evaluating code decay. This limitation serves to focus the
review. We found that coupling metrics are the most widely
used at identifying code decay. Researchers use various terms
to define code decay, and we recommend additional research to
operationalize the terms to provide more consistent analysis.

Index Terms—Code Decay; Metrics; Coupling; Design Rules; Archi-
tecture Violations; Software Evolution

I. INTRODUCTION

This systematic mapping study of code decay aims to give
a classification and thematic analysis of the literature with
respect to code decay detection procedures or methods by
aggregating information from empirical evidence. In contrast,
the purpose of a systematic review is often to ‘“identify,
analyze and interpret all available evidence related to a specific
research question” [20], [46, p.45]. We chose a mapping study
to find the empirical evidence of code decay because of our
broad research questions.

Research in software evolution shows that violations in
architecture and design rules cause code to decay [8], [11],
[23]. These violations are due to new interactions between
modules that were originally unintended in the planned design
[23], [43]. The violations include adding new functionality,
modifying existing functionality due to changing requirements
and repairing defects, which are all inconsistent with the
planned architecture and design principles. As a result, the
system becomes more complex, hard to maintain, and de-
fect prone [8], [30], [48]. Often, redesign or reengineering
of the whole system is the solution for this problem [11].
The phenomenon of gradual increase in software complexity
due to unintended interaction between modules that is hard
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to maintain has been termed code decay and architectural
degeneration [8], [15]. In this paper, code decay refers to the
violations of architecture, design rules and coding standards
over time that make software more difficult to modify.

Eick et al. [8] defined code decay as code being harder
to change than it should be after assessing code decay in
a 15 year old real-time telephone switching software system
using change management data. The system consisted of 50
major subsystems and about five thousand modules in C and
C++. They used measures such as number of changes to a
file, number of files touched to implement a change, sizes of
modules, average age of constituent lines of modules, fault
potential, and change effort. Their analysis confirmed that the
system decayed due to successive modifications.

As another example, Godfrey and Lee [11] analyzed the
open source project of the Mozilla web browser release M9 by
extracting architectural models using reverse engineering tools.
Mozilla web browser (M9) consisted of more than 2 million
lines of source code in more than seven thousand header
and implementation files in C and C++. After a thorough
assessment of architecture models, Godfrey and Lee concluded
that either Mozilla’s architecture has decayed significantly in
its relatively short lifetime or it was not carefully architected
in the first place [11].

Software metrics characterize attributes of software. Product
metrics measure attributes of development artifacts, such as
source code and design diagrams. Lines of code and McCabe
complexity are two of the best know metrics in this category.
Process metrics measure attributes of the development pro-
cess and events associated with the product, such as effort
expended, defects discovered, and number of changes to code.
Considerable research has modeled relationships between at-
tributes that can be measured early and those measured later
[12], [35]. For example, a statistical model might predict which
modules are more likely to have bugs in the future, based on
attributes measured early [35].

Code decay is an attribute that is evident only in retrospect.
It is usually assumed that “decay” is a gradual process that
goes unnoticed until a crisis occurs. One can detect decay
by comparing measured attributes from the past with current
values, and determine that quality has “decayed.” A challenge
for researchers is to find ways of detecting incipient “decay”
well before a crisis develops.
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Identifying and minimizing code decay is important to
engineering practitioners focused on design and development
issues thereby improving software quality. This systematic
mapping study identifies detection techniques and metrics used
to measure code decay. We followed Kitchenham and Charters
[21] approach to perform this study.

The contributions of this review include: presentation of
various terms used in the literature to describe decay, a
categorization of code decay detection techniques, and de-
scription of metrics used to identify code decay. This paper is
organized as follows: Section II describes the details of our
research methodology. Section III reports the results for the
research questions. Section IV discusses the implications and
limitations of the study and section V presents conclusions.

II. STUDY METHODOLOGY

A systematic mapping study follows a similar process as
systematic literature reviews, but the quality evaluation is not
essential [20]. This study on code decay provide a compre-
hensive overview of the literature and topic categorization in
a variety of dimensions (such as architecture violations and
design rule violations). The steps in our study are: 1) Plan the
study 2) Conduct the study and 3) Report the study.

A. Plan the Study

Planning a mapping study includes the following actions.

1) Identify the Need for the Study: The need for this
mapping study is to identify and understand the scope of the
empirical research on code decay and its forms. This study
helps researchers to understand the research and define future
research questions.

2) Specify the Research Questions: The major focus of this
review is identifying techniques and metrics to assess code
decay without including a general literature on fault prediction
performance in software engineering [12], or the literature on
fault prediction metrics [35]. Our research questions follow.

RQ1: What are the techniques used to detect code decay
(i.e., how is it discovered)? To answer this question, we
reviewed the literature and presented the categorization of code
decay detection techniques.

RQ2: Given code decay is detected, what metrics are used
to quantify the extent of code decay (i.e., how is it measured)?
We extracted metrics used to evaluate code decay from our list
of primary studies. A tabular overview of code decay metrics
is presented that helps practitioners to assess code decay.

3) Develop the Study Protocol: Following the Kitchenham
and Charters [21] guidelines, Dyba and Dingsgyr [6], [7] pro-
posed a review protocol in the systematic review of empirical
studies of agile software development. We followed a similar
approach to develop our study protocol because our focus is
on identifying empirical evidence of code decay. All authors
participated in designing the review protocol. This protocol
includes data sources and search strategy, inclusion and ex-
clusion criteria, quality assessment criteria, a data extraction
form, and data mapping. The details of inclusion and exclusion
criteria, quality assessment criteria, and the data extraction
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Fig. 1. Overview of article selection

form are given in a technical report [1]. Quality evaluation is
not essential in mapping studies, but we applied quality criteria
assessment when selecting our primary studies.

B. Conduct the Study

Conducting the study means performing the study protocol.

1) Data Sources and Search Strategy: The goal of the
search is to identify relevant papers describing code decay (and
related concepts) detection and measurement techniques. We
searched peer-reviewed articles in these electronic databases:
ACM Digital Library, Google Scholar, IEEE Xplore Digital
Library, and Scopus (includes Science Direct, Elsevier, and
Springer). In addition, we performed a bibliography check of
every primary study to include any additional relevant articles
that focused on our research questions. The high-level search
string with keywords and their synonyms is shown below.

(((software OR code OR architecture OR system OR design)
AND (erosion OR drift OR degeneration OR decay OR smell
OR aging OR grime OR rot OR violation*) AND (detect* OR
measure* OR metric* OR assess* OR evaluat*)))

The search strategy is a trade-off between finding relevant
and irrelevant studies from the results of the search string.
Figure 1 shows the review stages and number of studies
selected at each stage. The different stages in our study are:

1) Search electronic databases using the search string.

2) Eliminate irrelevant studies reviewing the topic area and

titles and remove duplicate articles using EndNote.

3) Filter articles based on the abstracts, inclusion and

exclusion criteria, and quality assessment criteria.

4) Obtain primary studies and check their bibliographies of

to include any additional appropriate studies.
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TABLE I
STUDIES BY RESEARCH METHOD

TABLE II
DISTRIBUTION OF PRIMARY STUDIES

Research method Number  Percent Publication channel Number
Case studies and archival studies 26 86 International Symposium on Empirical Software Engineering and 4
Controlled and quasi experiments 2 7 Measurement . .
Experience reports and surveys 2 7 Working Conference on Reverse Engineering 4
Total 30 100 International Conference on Software Maintenance 4
European Conference on Software Maintenance and Reengineering 3
The Journal of Systems and Software 2
International Conference and Exhibition on Technology of 2
. Object-Oriented Languages and Systems (TOOLS)
To the best of our knowledge there are no earlier map- IEﬂ;E Transactions oi‘?’, sﬁﬁwm Ezgineering 1
ping studies or systematic reviews conducted on code decay. IEEE Software , 1
. L. Software—Practice and Experience 1
Therefore the timeframe for our search was not limited and Communications in Computer and Information Science 1
articles up to May 2013 were considered. After searching peer- International Conference on Software Engineering !
. . . . IEEE International Software Metric Symposium 1
reviewed papers from the data sources and reviewing their Asia Pacific Software Engineering Conference 1
titles, we exported only the relevant articles to EndNote to IEEE Aerospace Conference . !
. . .. International Conference on Software Engineering and Knowledge 1
organize our bibliography. We excluded several false positives Engineering
that are not related to software engineering subject. We manu- International Workshop on Software Aging and Rejuvenation !
. . R Brazilian Symposium on Software Components, Architectures and 1
ally excluded papers with a focus on biology, and mechanical, Reuse "
otal

chemical and electrical engineering topics. EndNote has an
advanced feature to remove duplicate articles based on the
title, author names and conference titles. After eliminating
duplicate articles, there were 205 unique articles remaining.

2) Inclusion and Exclusion Criteria: The basis for selection
of primary studies is the inclusion and exclusion criteria.
During this stage, we read all the abstracts to determine if
the paper focused on identification or empirical evaluation of
code decay. We included a paper if it is focused on either on
identification or empirical evaluation of code decay. Of the
205 unique studies, 160 papers were selected after reviewing
abstracts. Studies were included if they presented empirical
evidence of code decay that includes architecture violations
and design rule violations over time. Studies were included
if they presented the detection of code decay at any level
of abstraction ((i.e., class, package, subsystem, architecture
and software system.) The term “decay” refers to the gradual
decrease in quality. Therefore, only studies that evaluated
decay on more than one version of a system developed over
a period of time were included. We emphasize time as an
important factor of decay. So papers that only took a snapshot
of a single version of a system were excluded. Studies that
concentrate on code decay detection techniques and analysis
of metrics on proprietary or open source systems are included.
Invited talks and expert opinions without empirical evidence
were excluded. Studies that focused on just one version of the
system, introductions, and tutorials were excluded. From the
140 papers after abstract review, we applied our inclusion and
exclusion criteria and ended up with 49 papers.

3) Quality Assessment Criteria: Assessing quality criteria
of studies is important for rigor in selecting primary studies.
We defined quality assessment criteria similar to Dyba and
Dingsgyr [6], [7] and applied these criteria to the 49 papers
that resulted from inclusion and exclusion. We established
quality criteria based on the types of studies that will be
included in the review. There are quality assessment criteria
to assess case studies and archival analysis, controlled and
quasi-experiments, and peer-reviewed experience reports and
surveys from industrial examinations. Based on the guidelines

and examples [6], [7], [17], [38] we developed quality criteria
checklists for different types of research studies [1]. The
criteria for the experience report papers are not as rigorous as
the other criteria for experiments and case studies. The primary
focus for experience report is peer-review and research value.
We applied the quality criteria uniformly for all the papers.
Most of the papers excluded during this stage were idea-based
and short papers. The accepted papers pass a specified number
questions for the paper to be included in the primary studies.
Applying the quality criteria resulted in 27 primary studies.
The acceptance criteria is as follows: case studies, 6 of the 8
criteria is required; controlled/quasi experiments 9 of the 11
criteria is required; and experience reports 4 out of 4 criteria
is required [1]. A bibliography check of the primary studies
led to 3 additional primary studies.

4) Data Extraction: Once the list of primary studies is
decided, the data from the primary studies is extracted. The
details of the data extraction form is given in our technical
report [1]. If the same study appeared in more than one publi-
cation, we included the most recent or the most comprehensive
version (i.e. the journal article). After applying the quality
assessment criteria, the first two authors studied papers in de-
tail, independently extracted the data, and then independently
reviewed a sample of each other’s data extraction forms for
consistency. We used the third author’s opinion to resolve any
inconsistencies. As a result there were no disagreements on
extracted data. During this process, after extracting the data
from a sample of papers, new keywords are included in the
search string if necessary.

5) Data Mapping: The extracted data from the primary
studies is mapped by identifying similarities in the detection
techniques and the metrics used in the detection process. The
level of potential automation was a natural distinction among
the techniques. Section III answers our research questions
and shows the classification of code decay forms, detection
techniques and metrics used to identify code decay.
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Fig. 2. Different forms of code decay

C. Report the Study

Like any other empirical study, this mapping study is
reported to the researchers and practitioners in software en-
gineering. We identified 30 primary studies based on our
research questions and review protocol. These studies cover
a range of research topics on architecture violations, design
defects and problems with source code. The number of pub-
lications using a particular research method is listed in Table
I. Of these 30 primary studies, 21 were performed on open
source projects and 9 on proprietary systems. Table II presents
the publication channels of our primary studies. Most of the
studies (75%) were published in conferences, while others
appeared in journals.

III. RESULTS

The results of our review are presented as answers to each
research question defined in section II.A.2. During our review
of papers we encountered various terms in the literature that
relate to code decay. These terms are organized on the basis
of architecture, design, and source code. This terminology of
code decay is shown in Figure 2. The definitions of these terms
are given in our technical report [1]. Because code clones are
considered a code smell and may well evolve from version
to version, they may contribute code decay. However, our
study did not include code clones, because it is a more mature
research area.

A. Research Question 1: What Are the Techniques Used to
Detect Code Decay (i.e. How Is it Discovered)?

Table III gives the summarized view of the different strate-
gies to detect code decay. The motivation for the high level
classification was the level of potential automation is a natural
distinction among the techniques. Research techniques can
be broadly categorized as human-based (manual) and metric-
based (semi-automated) approaches.

1) Human-Based Approach: Human-based detection tech-
niques consist of manual visual inspection of source code and
architectural artifacts.

a) Inspection of Source Code: Source code inspections are
performed subjectively and are guided by questionnaires. In
the technique presented by Mintyld et al. [26], developers
manually inspected source code to identify code smells. They
identified three different code smells (duplicate code, god
class, and long parameter list) by filling out a web-based ques-
tionnaire. The assessment was based on subjective evaluation
on a seven-point numeric Likert scale. These results do not
correlate with code smells found using source code metrics.
Similarly, Schumacher et al. [41] detected code smells (god
class) manually by inspecting source code. In this study the
subjects were encouraged to “think aloud” as they filled out
the questionnaires. They compared the subjective results with
the metric values from the automated classifiers. The results
of their study increased the overall confidence in automatic
detection of smells. They also found that god classes require
more maintenance effort.

b) Inspection of Architectural Artifacts: Inspection of ar-
chitecture artifacts is done by subjective evaluations using
checklists and by comparing architecture models. Bouwers and
van Deursen [2] proposed the lightweight sanity check for
implemented architectures (LiSCIA) to identify architecture
erosion. They provide a checklist of 28 questions based on
units of modules, module functionality, module size, and
module dependencies. Developers evaluate implemented archi-
tectures by inspecting the architecture artifacts. The evaluation
phase consists of answering a list of questions concerning the
architecture elements. LiSCIA provides corresponding actions
to the questions to help identify the erosion in an implemented
architecture. Rosik et al. [37] assessed architectural drift by
comparing the implemented architecture with the original
architecture of a system using a reflexion model (RM) [28].
Developers create and update the code base and associated
mappings to the original and implemented architectures. This
model displays the architecture in a pictorial representation
with nodes and edges. The participants “think aloud” and
assess the inconsistencies to identify violations from the results
of the model. Their case study confirms that architectural drift
occurred during the evolution of the system.

Manual detection of code decay and its categories is te-
dious work. Moreover, this process is time consuming, non-
repeatable, and non-scalable. Manual detection of code smells
do not correlate with the results of source code metrics derived
from automated classifiers [26], [41].

2) Metric-Based Approach: The metric-based approach is
divided into four subcategories. They are: historical data
analysis, interpretation of rules, and model based techniques.
These are discussed in the next subsections. We derived these
subcategories by grouping each of the papers based on the
unique approach presented. The four subcategories represent
an orthogonal classification of the approaches used in the
primary studies. The metric details used in these techniques
are presented in section III.B.
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TABLE I
CODE DECAY DETECTION TECHNIQUES

Detection Technique Category Subcategory Reference
Human-based (manual) approach Inspection of source code Filling out questionnaires [26], [41]
Inspection of architectural artifacts Answering checklist questions 21, [37]

Metric-based (semi-automated)
approach

Historical data analysis

Change management data [8]

Architecture history [3], [13]
Defect-fix history [22], [29]
Source code metrics [36]. [43]. [44]

Rule-based interpretations

Heuristics with threshold filter rules [23], [27], [30], [31], [34], [42]

Domain specific language rules [4], [19]
Model-based techniques Probabilistic model [45]

Graphical model [18], [39]

Modularity model [47]

a) Historical Data Analysis: The categories of historical
data analysis used for discovery of code decay are change
management data, architecture history, defect-fix history, and
using source code metrics.

Change Management Data: Eick et al. [8] dealt with the
history of change management data to detect code decay using
code decay indices. Change management history includes
source code of the feature, modification request, delta, and
change to severity levels. Their statistical analysis on this data
showed that an increase in the number of files touched per
change and decrease in modularity over time yields strong
evidence of code decay.

Architecture History: Brunet et al. [3] used the architectural
diagrams from several versions of four different open source
systems. They found violations in the architecture by applying
the reflexion model technique [28]. They extracted JDepend,
Lattix reverse engineering tools and design documentation to
extract the high level architecture. They identified more than
3000 architecture violations.

Hassaine et al. [13] proposed a quantitative approach called
ADVISE to detect architectural decay in software evolution.
They used the architectural histories of three open source
systems. The architecture history consists of architectural
diagrams of different versions that are extracted from source
code using a tool. The extracted architecture is represented
as a set of triplets (triplet (S, R, T) where S and T are two
classes and R is the relationship between two classes). They
performed pair-wise matching of the subsequent architectures
to identify deviations in the actual architecture from the orig-
inal architecture by tracking the number of common triplets.
This procedure was accomplished by matching architectural
diagrams using a bit-vector algorithm. An increase in the
number of classes and number of common triplets over time
is a good indicator of architecture decay.

Defect-Fix History: Li and Long [22] used defect-fix his-
tory to measure architecture degeneration. Defect-fix history
consists of information about the release, component in which
the defect occurred, and the number of files changed to fix
the defect. To analyze the defect history, they used multiple
component defect metrics (e.g., percentage of defects that
affected multiple components in a system and the average
quantity of files changes to fix a defect). After analyzing the
defect-fix history of a compiler system they found that an

increase in the value of these metrics between two versions
of the system indicates that the architecture has degenerated.
Ohlsson et al. [29] performed historical data analysis on the
defect-fix reports or source change notices of large embedded
mass storage system to identify code decay. The defect-fix
reports consist of description of release and the defect that has
to be corrected. Average number of changes, size, effort and
coupling are used to identify code decay. Average number of
changes and coupling metrics play a major role in identifying
code decay in this system. Their results showed that increases
in values of these metrics indicate code decay.

Source Code Metrics: Researchers [43], [36], [44] compares
the metrics of the source code over different versions of system
using original version to identify code decay. Tvedt el al.
[43] compares the interactions between the mediator and the
colleagues in the mediator pattern between the two versions of
Visual Query Interface (VQI) system (VQI1 and VQI2). They
used coupling between modules (CBM) to identify unintended
violations in the mediator design pattern and other misplaced
violations. They concluded that the actual design of the
system veered from the planned design. Riaz et al. [36] used
coupling related metrics to compare two versions of a system.
They found that an increase in the value of coupling related
metrics indicates architecture decay. Van Gurp and Bosch [44]
compared UML design diagrams of the ATM simulator from
one version to another version by calculating metrics related to
packages, functions and inner classes. Increases in the values
of metrics, design decisions, and new requirements during the
evolution of the system cause design erosion.

b) Rule-Based Interpretations: Rule-based interpretations
are divided into two types. They are 1) Metric heuristics with
threshold filters and 2) Domain specific language rules.

Metric Heuristics with Threshold Filters: Several re-
searchers [27], [30], [31], [34] used metric-based heuristics to
detect code/design smells. Marinescu [27] proposed a metric-
based approach to detect code/design flaws in an object-
oriented system. He detected code smells (god class and data
class) using the values of metrics as heuristics. An example
of one metric is given here: 1) The lower the Weight of Class
(WOC) value, the more the class is expected to be a Data
class and 2) The higher the WOC value, the more the class is
expected to be god class. Similarly, he used metric heuristics
on other metrics to detect both of these classes in an industrial
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case study. The threshold values are based on expert opinion.

Ratiu et al. [34] used heuristics and threshold values for
each metric to detect god classes and data classes. These
threshold values are based on the experience of the analyst.
The results of this detection technique are suspected code
smells. They analyzed different versions of software to obtain
class and system history using the Evolution Matrix method.
Their results highlight that this method improves accuracy in
detecting god classes and data classes. Olbrich et al. [30], [31]
used heuristics with threshold filter rules to detect god classes,
brain classes, and shotgun surgery code smells. The threshold
values used in the filtering rules are based on expert opinion.

An analysis of different versions of Lucene and Xerces
found that there is a large correlation between the size of the
system and the number of god classes, number of shotgun
classes, and the number of brain classes. The preceding code
smell techniques are indicators of code decay.

Lindvall et al. [23] compares the interactions between the
modules in two versions of Experience Management Sys-
tem (EMS1 and EMS2) to avoid architectural degeneration.
They measured architecture degeneration using coupling be-
tween modules (CBM) and coupling between module classes
(CBMC). The values of CBM and CBMC are lower for the
ESM2 version than ESM1 version, which indicates developers
avoided architecture degeneration in the system.

Domain Specific Language Rules: Khomh et al. [19] used
the DEtection and CORrection (DECOR) technique to detect
code smells (god class). This technique generates automatic
detection algorithms to detect code smells or antipatterns using
rule cards. Rule cards are designed in a domain specific
language with the combination of metrics and threshold values.
The threshold values are defined based on in-depth domain
analysis and empirical studies. The authors analyzed the
relation between code smells and the changes in 9 releases of
Azureus and 13 releases of Eclipse and concluded that code
smells do have higher change-proneness. Ciupke [4] proposed
automatic detection of design problems by specifying queries
to the information gathered from the source code. The result of
the query is the location of the problem in the system. These
design queries can be implemented using logical propositions.
The heuristics used to build these queries are based on the ex-
perience of the author. The author presented design violations
in different versions of industrial and academic systems.

¢) Model-Based Techniques: The three model-based tech-
niques are: 1) Probabilistic model 2) Graph model and 3)
Modularity model

Probabilistic Model: Vaucher et al. [45] used a Bayesian
network approach to detect the presence of god classes. They
built a Bayesian network model of the design detection rules.
This model is based on metrics used to characterize specific
classes and compute the probability that these specific classes
are god classes. Metrics such as number of methods, number
of attributes of a class and other cohesion values are used
as inputs to the model. This probabilistic model predicts all
the occurrences of god classes with a few false positives in
different versions of Xerces and EclipseJDT.

Graph Model: Sarkar et al. [39] detected back-call, skip-call
and dependency cycle violations in a layered architecture using
a module dependency graph. The metrics used to detect these
violations are: back-call violation index, skip-call violation
index, and dependency violation index. In a dependency graph,
back-call violations can be detected if the modules of one layer
call the modules in another layer except the top layer. Skip-
call violations can be detected by identifying the modules of
one layer calls the modules existing in other layers but not the
modules in adjacent layers. Dependency cycle violations are
detected by the identifying strongly connected components in
the module dependency graph. In a strongly connected graph,
there exists a path from each vertex to every other vertex in
a graph. The authors analyzed MySql 4.1.12 and DSpace and
identified these violations using module dependency graphs.
Johansson and Host [18] identified an increase in violations
of design rules using graph measures of the architecture of a
software product lines. Increase in the design rule violations
from one version to other version of the software is a good
indicator of code decay.

Modularity Model: Wong et al. [47] detected software mod-
ularity violations using their CLIO tool. This tool computes the
differences between predicted co-change patterns and actual
co-change patterns to reveal modularity violations (co-change
patterns reflect classes that are often changed simultaneously).
The co-change patterns are predicted by a logical model
called Augmented Constraint Network (ACN) according to
the Baldwin and Clarks design rule theory. They analyzed
10 releases of Eclipse JDT and 15 releases of Hadoop and
identified four types of modularity violations that contribute
code decay. They are: cyclic dependency, code clone, poor
inheritance hierarchy, and unnamed coupling.

B. Research Question 2: Given Code Decay is Detected, What
Metrics Are Used to Quantify the Extent of Code Decay (i.e.,
How Is it Measured)?

The results regarding metrics are summarized in Table IV.
Eick et al. [8] defined code decay indices: history of frequent
changes, span of changes, size, age, and fault potential to
analyze historical change management data. An increase in
values for history of frequent changes for a class and, span
of changes for modification records are indicators of code
decay. Ohlsson et al. [29] found empirical evidence of code
decay using average number of changes in a module, and
‘coupling’ (how often a module involved in defects that re-
quired corrections extended to other modules). Increase in the
value of coupling and average number of changes in a module
is a good indicator of code decay. Lindvall et al. [23], [43]
uses coupling between modules (CBM) and coupling between
module classes (CBMC) to avoid architecture degeneration by
identifying violations in the mediator pattern. The increase in
value the of CBM and CBMC from one version of the system
to another indicates degeneration in architecture. Li and Long
[22] used various metrics related to defects spanning multiple
components in a system. The greater the values of these
metrics, the more significant is the architecture degeneration.
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TABLE IV
(CONTINUED)

TABLE IV
METRICS
Category/Metrics Relationship
Code decay

History of frequent changes: Number of
changes to a module over time [8].

Span of changes: Number of files touched
by a change [8].

Coupling: How often a module involved
in defects that required corrections
extended to other modules [29].

Size: Number of non-commented source
code lines from all the files in a module
[8] (OR) Sum of added LOC, deleted
LOC, added executable LOC and deleted
executable LOC [29].

Fault potential: Number of faults that will
have to be fixed in a module over time [8].

Effort: Man hours required to implement
a change [8], [29].

Increase in number of changes to a
module is an indicator of code decay.

Increase in span of changes is an
indicator of code decay.

Increase in coupling between
modules is an indicator of code
decay.

Growth in size of the system over
time alone does not tell about the
code decay. It represents the
complexity of the system.

Number of faults need to fixed itself
does not reveal evidence of code
decay. It is the likelihood of changes
to induce faults in the system.

This depends on the total number of
files touched to implement a change.

Category/Metrics

Relationship

Design pattern decay (Modular grime)
Direction of coupling: Number of inbound
and out-bound relationships [40].

Increase in number of in-bound
classes is more difficult to remove
than out-bound classe

Design erosion

Number of packages, Number of inner
classes, Number of functions,
Non-commented source code statements,
New (inner) classes, New functions,
Removed (inner) classes. Metrics related
to packages, functions, and inner classes.
[44].

Increase of these metrics between
different versions of system indicates
design erosion. However, not all
changes are reflected in the metrics.
It also depends on how design
decisions accumulate and become
invalid because of new requirements.

Software aging

LOC, CountCodeDel, countLineCodeExe,
CountLineComment, CountDeclFileCode,
CountDeclFileHeader, CountDeclClass,
CountDeclFunction, CountLinelnactive,
CountStmtDecl, CountStmtExe,
RatioCommentToCode Metrics related to
program size (amount of lines of code,
declarations, statements, and files) [5].

Program size metrics are positively
correlated with software aging.

Architecture degeneration (modular level)
Coupling-between-modules (CBM):

Number of non-directional, distinct,
inter-module references [23], [43].

Coupling-between-module-
classes(CBMC): Number of
non-directional, distinct, inter-module,
class-to-class references [23].

Increase in the values of CBM and
CBMC from one version to other
version of the system indicates
architectural degeneration.

Architecture Violations

Back-call violation index (BCVI), Skip-call
violation index (SCVI), Dependency cycle
violation index (DCVI): These are metrics
used to detect back-call, skip-call and
dependency cycle violations in layered
style architecture. [39].

If BCVI/SCVI/DCVI is 1, then no
violation.

If BCVI/SCVI/DCVI is 0, then there
is violation.

Architecture degeneration (defect perspective)

The average quantity of strong fix
relationships that a component has in a
system, The percentage of multiple
-component defects (MCD) in a system,
The average MCD density of components
in a system, The average quantity of
components that an MCD spans in a
system, The average quantity of code
changes (fixes) required to fix an MCD in
a system

MCD means defects spanning multiple
components in a system.

Fixing an MCD requires changes in the
associated components. The relationship
among these components is a fix relation.
[22]

The greater the values of these
metrics are, the more serious the
architectural degeneration is.

Code smells (god class)

Access to Foreign Data (ATFD): The
number of external classes from which a
given class access attributes, directly or
via accessor methods. Inner classes and
super classes are not counted. [27], [34],
[301, [31], [42]

Weighted Method Count (WMC): WMC is
the sum of statical complexity of all
methods in a class. [27], [34], [30], [31],
[42]

Tight Class Cohesion (TCC): TCC is
defined as the relative number of directly
connected methods. [27], [34], [30], [31],
[42]

Number of Attributes (NOA): Number of
attributes in a class. [34]

Increase in the number of god classes
over time is an indicator of code
decay. However, there are some
harmless god classes also. (Ex: Class
that has functionality of parser.)

Architecture decay
Number of classes: Growth in size of the
application [13].

Number of triplets: Triplet(S,R,T) S and T
are two classes. R is the relation between
S and T. [13].

Data Abstraction Coupling(DAC):
Number of instantiations of other classes
within a given class [36].

Message Passing Coupling (MPC):
Number of method calls defined in
methods of a class to methods in other
classes [36].

Coupling between objects (CBO): Average
number of classes used per class in a
package [36].

Increase in the number of classes and
number of common triplets from one
version to another version by
architectural diagram matching is a
good indicator of architectural decay.
Matching of architecture diagrams is
automated using bit-vector algorithm.

Increase in the values of DAC, MPC
and CBO from old version to latest
version of the system becomes harder
to maintain and indicates architecture
decay.

Code smells (data class)

Weight of Class (WOC): Number of
attributes in a class. The number of
non-accessor methods in a class divided
by the total number of members of the
interface[27], [34], [42]

Number of Public Attributes (NOPA): The
number of non-inherited attributes that
belong to interface of a class. [27], [34],
[42]

Number of Accessor Methods (NOAM):
The number of non-inherited accessor
methods declared in the interface of a
class [27], [34], [42].

Weighted Method Count (WMC): The
sum of the statical complexity of all
methods in a class [42]

Increase in the number of data
classes over time is an indicator of
code decay.

Design pattern decay (Modular grime)
Strength of coupling: Determined by
removing the coupling relationship
between classes (can be persistent or
temporary) [40].

Scope of coupling: Demarcates the
boundary of a coupling relationship (can
be internal or external) [40].

Persistent relationship between
classes is more prone to decay
compared to temporary association.

Grime originating from external
classes is more prone to decay than
internal classes.

Code smells (brain class)
WMC and TCC are same as described
under god class detection. [31]

Number of brain methods (NOM):
Number of methods identified as brain
methods in class. LOC in a method,
cyclomatic complexity of a method,
maximum nestinng level of control
structures within the method and number
of accessed variables in a method.[31]

Increase in the number of brain
classes over time is an indicator of
code decay.




TABLE IV
(CONTINUED)

Category/Metrics Relationship

Code smells (shotgun surgery)
Changing Methods (CM): The
number of distinct methods that call
a method of a class. [27], [34]

Increase in the number of
shotgun surgery smells over time
is an indicator of code decay.

Changing Class (CC): The number
of classes in which the methods that
call the measured method are
defined. [27], [34]

Code smells (Feature envy)

Access to Foreign Data (ATFD): The
number of external classes from
which a given class access attributes,
directly or via accessor methods.
Inner classes and super classes are
not counted. [42]

Increase in the number of feature
envy type code smells over time
is an indicator of code decay.

LAA: The number of attributes from
the method’s definition class, divided
by total number of variables
accessed.[42]

Design smells (Extensive coupling and intensive coupling)
CINT: The number of distinct
operations called from the measured
operation. [42]

Increase in coupling over time is
an indicator of code decay.

CDISP: The number classes in
which the operations called from the
measured operations are defined in,
divided by CINT.[42]

Architecture degradation

Graph measure: It is a function that
denotes the deviation of the
architecture structure compared to
the wanted structure defined by
design rules. [18]

Increase in the number of design
rule violations makes
architecture degraded and an
indicator of code decay.

Hassaine et al. [13] used metrics such as the number of
classes and the number of triplets to identify architecture decay
by analyzing the architecture history using architectural dia-
gram matching. Riaz et al. [36] used coupling related metrics
such as Data Abstraction Coupling (DAC), Message Passing
Coupling (MPC), and Coupling between objects (CBO) and
by comparing these values between two versions of the
system. The increase in the values of these metrics indicate
architecture decay of the system. Grime is the phenomenon
of accumulating unnecessary code in the design pattern. It
is a form of design pattern decay. The three levels of grime
are class grime, modular grime and organizational grime [16].
Schanz and Izurieta [40] use metrics of strength, scope, and
direction of coupling to classify modular grime. Van Gurp and
Bosch [44] assessed design erosion using metrics related to
packages, functions, and inner classes. Increase in the values
of these metrics between different versions of the systems
indicate design erosion. Design erosion is not fully explained
by the metrics. They found that design erosion is also based on
the accumulation of design decisions that are not implemented
due to new requirements. Sarkar et al. [39] used violation
indices (BCVI, SCVI, and DCVI) to detect back-call, skip-
call, and dependency cycle violations in a layered architectural
style. If the value of BCVI/SCVI/DCVI indices is 1 then,

there is no corresponding violation in the architecture. If
BCVI/SCVI/DCVI value is zero, then there is corresponding
violation in the architecture.

Our primary studies presented empirical evidence that an
increase in the number of code smells from one version to
another is an indicator of code decay. The code smells were
identified using using well-defined metrics [30], [34], [31],
[27]. These metrics are listed in Table IV. The threshold
values of the metrics is based on expert opinion and empirical
analysis. An increase in the number of code smells during the
evolution of software is an indicator of code decay. Cotroneo
et al. [5] used the program size metrics (such as amount of
lines of code, declarations, statements and files) to predict the
relation between software aging trends and software metrics.

IV. DISCUSSION

In this mapping study, we identified 30 primary studies
related to our research questions. This section discusses the
implications of our results, weaknesses of our primary studies,
research issues, and the limitations of our study.

A. Implications

The detection strategies we found in this review are cate-
gorized into human-based (manual) and metric-based (semi-
automated) approaches. In manual processes, code decay is
typically identified by answering questionnaires and using
checklists. This approach is time consuming and non repeat-
able for larger systems. Moreover, it is expensive.

Metric-based approaches involve less human intervention in
identifying code decay. Among the metric-based approaches,
historical data analysis is useful only if the history of the
system is available by comparing the architecture of one
version to the subsequent architecture version. Source code
metrics (Coupling between modules, coupling between module
classes etc.) are compared to one another at the modular level.
These metric values help to understand and avoid architecture
degeneration. Modular metrics are helpful in identifying struc-
tural violations in design patterns and architectural styles. Ap-
plying heuristics with threshold filtering rules is a prominent
technique to identify code/design smells. The disadvantage of
this technique is threshold values are determined by expert
opinion. Using expert opinion for threshold values does not
apply to all the systems uniformly in identifying code decay.
A model-based approach uses Bayesian models where the
probability is computed using manually validated data. In
metric-based approaches there is less human intervention and
they are scalable to larger systems. From our observations,
historical data analysis is a predominant technique to identify
code decay when compared to other techniques.

Metrics that identify module and class coupling are pre-
dominantly used in the literature to detect code decay. Our
review found that complexity metrics alone did not provide
evidence of code decay. Coupling related metrics such as
coupling between modules, coupling between module classes,
data abstraction coupling, message passing coupling, coupling
between objects, number of files coupled for a change, strength

348



of coupling, scope of coupling, and direction of coupling
do give evidence of code decay. It is important to measure
coupling when assessing code decay.

Code decay degrades the quality attributes of the system.
Some of the quality attributes include: maintainability (effort
to change the code) [8], [30], [41], [43], [48], understandability
[23], [30], [41], and extendability (effort to add new function-
ality) [43]. We also observed different factors, both developer-
driven and process-driven lead to code decay. Developer-
driven decay involves inexperienced/novice developers [41],
developers focused on pure functionality [41], lack of system’s
architecture knowledge [37], developers apprehension due to
system complexity [37], and impure hacking (carelessness
of the developers). Process-driven decay includes difficulties
related to missing functionality [37], violation of object-
oriented concepts (data abstraction, encapsulation, modularity
and hierarchy) [41], project deadline pressures [30], [41],
changing and adding new requirements [8], [23], [43], updat-
ing new software and hardware components [8], and ad-hoc
modifications without documentation [39].

Studies that concentrated on the relation between the de-
sign/code smells and architecture degradation [18], [24], [25]
provide evidence of how design/code smells affect the archi-
tecture degradation. In aspect-oriented programming, modu-
larity anomalies scattered among different classes is usually
an architecturally-relevant smell. Such architecturally-relevant
smells are difficult and expensive to fix in the later stages
of software development [25]. Macia et al. [24] suggested
that developers should promptly identify and address the
code smells upfront, otherwise code anomalies increase the
modularity violations and cause architecture degradation.

B. Weaknesses

Our primary studies did not focus on maintenance effort
of the code decay with respect to architecture violations or
the code smells. Primary studies focused only on the human-
based and semi-automated approaches and not automated
approaches. Researchers presented rule-based interpretations
using heuristics with thresholds and domain specific languages
but not focused on rules that violate architectural styles and
design patterns.

C. Research Issues

From the current state-of-the art of code decay detection
techniques, we can infer that there is an opportunity in the
following research areas.

1) Automated Classifiers: There is need for research on
automated detection techniques of code decay. Automated
detection means automatic decision-making in identifying
violations in architectural rules, design rules, and source code
standards. There is a need to build automated classifiers that
support developers in locating architecturally-relevant code
smells and detecting the violations in architecture.

2) Deriving Architecture Constraints: Research should be
conducted in evaluating the implemented architecture of the
software system with the goal of deriving rules for architecture

styles and design patterns used in the system. Research and
evaluation techniques are needed to prevent code decay by au-
tomatically identifying architecture and design rule violations
at the time of check-in to the version control system during
the implementation phase of software development life cycle.

3) Representation of Architecture: van Gurp and Bosch
[44] indicate expressiveness of representing the architecture
is one of the research challenges of the large and complex
systems. Applying the research on visual analytics to represent
the software architectures and to track the violations of the
architecture over different versions of the system is another
important area of research.

4) Cost—Benefit Analysis: Another challenge is to measure
the maintainability of large and complex software systems.
Research should be conducted on the cost of refactoring,
based on prioritization of categories of architecture violations
and design/code smells. The relationship between code decay
and the maintenance effort over different versions deserves
investigation.

5) Identifying Best Practices: There is a need to identify
the best practices for identifying architectural violations and
design paradigms. The research focus must be on identifying
and minimizing code decay with respect to procedures, tech-
nologies, methods or tools, and by aggregating information
from empirical evidence.

6) Terminology: Research should be conducted to opera-
tionalize the various code decay related terms to move toward
a consensus in defining the phenomenon of code decay at
various levels of abstraction.

D. Limitations

One of the limitations of this review is possible bias in
selection of our primary studies. To ensure that the selection
process was unbiased, we developed a research protocol based
on our research questions. We selected our data sources and
defined a search string to obtain the relevant literature. Since
the software engineering terms are not standardized, there is a
risk that the search results might omit some of the relevant
studies. To reduce this risk, we did a bibliography check
of every article we selected for primary studies. Another
limitation of this study is that only authors participated in
the selection and analysis of the papers. We mitigated this
risk by having discussions on the inconsistencies raised while
conducting our study. Another potential limitation is papers
that do not emphasize time or successive versions of a system
were excluded in this study.

V. CONCLUSIONS

This paper described a systematic mapping study that tar-
geted empirical studies of detection techniques and metrics
used in code decay. A total of 30 primary studies were selected
using a well-defined review protocol. The three contributions
of this paper are the following. First, we categorize different
terms used in the literature that leads to code decay with
respect to the violations in architectural rules, design rules
and source code standards. Second, we classify the code
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decay detection techniques into human-based and metric-based
approaches. Subcategories of these approaches are also dis-
cussed. Finally, we present a comprehensive tabular overview
of metrics used to identify code decay and their relationship
with code decay. Metrics identified to detect code decay
help to assess the severity of code decay and to minimize
it. Coupling related metrics are widely used and helpful at
identifying code decay.

(1]

[2]

[3]

[4]
[5]

[6]

[7]

[8]

[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

(20]

[21]

[22]

REFERENCES

A. Bandi, B. J. Williams, and E. B. Allen, “Empirical evidence on code
decay: A systematic mapping study,” Mississippi State University, Tech.
Rep. 06152013, 2013.

E. Bouwers and A. van Deursen, “A lightweight sanity check for
implemented architectures,” IEEE Software, vol. 27, no. 4, pp. 44-50,
2010, [Primary Study].

J. Brunet, R. A. Bittencourt, D. Serey, and J. Figueiredo, “On the
evolutionary nature of architectural violations,” in /19th WCRE, 2012,
[Primary Study].

O. Ciupke, “Automatic detection of design problems in object-oriented
reengineering,” in TOOLS, 1999, pp. 18-32, [Primary Study].

D. Cotroneo, R. Natella, and R. Pietrantuono, “Is software aging related
to software metrics?” in 2nd International Workshop on Software Aging
and Rejuvenation, 2011, [Primary Study].

T. Dybéa and T. Dingsgyr, “Empirical studies of agile software devel-
opment: A systematic review,” Information and Software Technology,
vol. 50, 2008.

, “Strength of evidence in systematic reviews in software engineer-
ing,” in Second ESEM, 2008, pp. 178-187.

S. G. Eick, T. L. Graves, A. F. Karr, J. Marron, and A. Mockus,
“Does code decay? Assessing the evidence from change management
data,” IEEE Transactions on Software Engineering, vol. 27, no. 1, 2001,
[Primary Study].

M. Fowler and K. Beck, Refactoring: Improving the design of existing
code. Addison Wesley, 1999.
J. Garcia et al., “Identifying architectural bad smells,” in European

Conference on Software Maintenance and Reengineering, 2009.

M. W. Godfrey and E. H. S. Lee, “Secrets from the monster: Extracting
Mozilla’s software architecture,” in 2nd International Symposium on
Constructing Software Engineering Tools, 2000.

T. Hall er al, “A systematic literature review on fault prediction
performance in software engineering,” IEEE Transactions on Software
Engineering, vol. 38, no. 6, 2012.

S. Hassaine, Y.-G. Guéhéneuc, S. Hamel, and G. Antoniol, “Advise:
Architectural decay in software evolution,” in 16th European Confer-
ence on Software Maintenance and Reengineering, 2012, pp. 267-276,
[Primary Study].

L. Hochestein and M. Lindvall, “Combating architectural degeneration:
A survey,” Information and Software Technology, vol. 47, no. 10, 2005.
L. Hochstein and M. Lindvall, “Diagnosing architectural degeneration,”
in 28th Annual NASA Goddard Software Engineering Workshop, 2003.
C. Izurieta and J. M. Bieman, “Software designs decay: A pilot study of
pattern evolution,” in /st ESEM, 2007, pp. 449-451, [Primary Study].

A. Jedlitschka, M. Ciolkowski, and D. Pfahl, Reporting experiments in
software engineering guide to advanced empirical software engineering.
London: Springer, 2008.

E. Johansson and M. Host, “Tracking degradation in software product
lines through measurement of design rule violations,” in SEKE, 2002,
[Primary Study].

F. Khomh, M. D. Penta, and Y.-G. Guéhéneuc, “An exploratory study
of the impact of code smells on software change-proneness,” in /6th
WCRE, 2009, [Primary Study].

B. A. Kitchenham, D. Budgen, and O. P. Brereton, “Using napping
studies as the basis for further research—a participant-observer case
study,” Information and Software Technology, vol. 53, 2009.

B. A. Kitchenham and S. Charters, “Guidelines for performing system-
atic literature reviews in software engineering,” Keele University and
University of Durham, Tech. Rep. EBSE, 2007.

Z.Li and J. Long, “A case study of measuring degeneration of software
architectures from a defect perspective,” in 18th Asia Pacific Software
Engineering Conference, 2011, pp. 242-249, [Primary Study].

[23]

[24]

(25]

[26]
[27]

(28]

(29]

(30]

(31]

[32]
(33]

(34]

(35]

(36]

[37]

(38]

(39]

(40]

[41]

(42]
[43]

[44]

[45]
[46]

(47]

(48]

350

M. Lindvall, R. Tesoriero, and P. Costa, “Avoiding architectural degener-
ation: An evaluation process for software architecture,” in Eighth IEEE
Symposium on Software Metrics, 2002, [Primary Study].

I. Macia, R. Arcoverde, A. Garcia, C. Chavez, and A. von Staa, “On
the relevance of code anomalies for identifying architecture degradation
symptoms,” in 16th European Conference on Software Maintenance
Reengineering, 2012, [Primary Study].

I. Macia, A. Garcia, A. von Staa, J. Garcia, and N. Medvidovic, “On
the impact of aspect-oriented code smells on architecture modularity:
An exploratory case study,” in Fifth Brazilian Symposium on Software
Components, Architectures and Reuse, 2011, [Primary Study].

M. V. Mintyl4, J. Vanhanen, and C. Lassenius, “Bad smells—humans as
code critics,” in 20thICSM, 2004, pp. 399-408, [Primary Study].

R. Marinescu, “Detecting design flaws via metrics in object-oriented
systems,” in 39th TOOLS, 2001, pp. 173-182, [Primary Study].

G. C. Murphy, D. Notkin, and K. J. Sullivan, “Software reflexion
models: Bridging the gap between design and implementation,” IEEE
Transactions on Software Engineering, vol. 27, no. 4, 2001.

M. C. Ohlsson et al., “Code decay analysis of legacy software through
successive releases,” in IEEE Arerospace Conference, 1999, pp. 69-81,
[Primary Study].

S. M. Olbrich, D. S. Cruzes, V. Basili, and N. Zazworka, “The evolution
and impact of code smells: A case study of two open source systems,”
in 3rd ESEM, 2009, [Primary Study].

S. M. Olbrich, D. S. Cruzes, and D. I. K. Sjgberg, “Are all code smells
are harmful? a study of God classes and Brain classes in the evolution
of three open source systems,” in 26th ICSM, 2010, [Primary Study].
D. L. Parnas, “Software aging,” in 16th ICSE, 1994, pp. 279-287.

D. E. Perry and A. L. Wolf, “Foundations for the study of software
architecture,” ACM SIGSOFT Software Engineering Notes, vol. 17, no. 4,
1992.

D. Ratiu, S. Ducasse, T. Girba, and R. Marinescu, “Using history
information to improve design flaws,” in 8th European Conference on
Software Maintenance and Reengineering, 2004, [Primary Study].

D. Radjenovi¢ et al., “Software fault prediction metrics: A systematic
literature review,” Information and Software Technology, vol. 55, no. 8,
2013.

M. Riaz, M. Sulayman, and H. Naqui, “Architectural decay during
continous software evolution and impact of ‘design for change’ on
software architecture,” Communications in Computer and Info. Science,
vol. 59, 2009, [Primary Study].

J. Rosik, A. L. Gear, J. Buckley, M. A. Babar, and D. Connolly,
“Assessing architectural drift in commercial software development: A
case study,” Software—Practice and Experience, vol. 41, pp. 63-86, 2011,
[Primary Study].

P. Runeson and M. Host, “Guidelines for conducting and reporting case
study research in software engineering,” Empirical Software Engineer-
ing, vol. 14, pp. 131-164, 2009.

S. Sarkar, G. Maskeri, and S. Ramachandran, “Discovery of architectural
layers and measurement of layering,” The Journal of Systems and
software, vol. 82, no. 11, pp. 1891-1905, 2009, [Primary Study].

T. Schanz and C. Izurieta, “Object oriented design pattern decay: A
taxonomy,” in ESEM, 2010, [Primary Study].

J. Schumacher, N. Zazworka, F. Shull, C. Seaman, and M. Shaw,
“Building empirical support for automated code smell detection,” in
ESEM, 2010, [Primary Study].

A. Trifu and R. Marinescu, “Diagnosing design problems in object
oriented systems,” in /2th WCRE, 2005, pp. 7-11, [Primary Study].
R. T. Tvedt, P. Costa, and M. Lindvall, “Does the code match the design?
A process for architecture evaluation,” in /CSM, 2002, [Primary Study].
J. van Gurp and J. Bosch, “Design erosion: problems and causes,” The
Journal of Systems and Software, vol. 61, pp. 105-119, 2002, [Primary
Study].

S. Vaucher et al., “Tracking design smells: Lessons from a study of God
classes,” in 16th WCRE, 2009, pp. 145-154, [Primary Study].
C. Wohlin et al., Experimentation in Software Engineering.
Springer, 2012.

S. Wong, M. Kim, and M. Dalton, “Detecting software modularity
violations,” in 16th European Conference on Software Maintenance and
Reengineering, 2012, pp. 411-420, [Primary Study].

A. Yamashita and L. Moonen, “Do code smells reflect important
maintainability aspects?” in IEEE ICSM, 2012, [Primary Study].

Berlin:



